Multiphoton microscopy in life sciences.

نویسنده

  • K König
چکیده

Near infrared (NIR) multiphoton microscopy is becoming a novel optical tool of choice for fluorescence imaging with high spatial and temporal resolution, diagnostics, photochemistry and nanoprocessing within living cells and tissues. Three-dimensional fluorescence imaging based on non-resonant two-photon or three-photon fluorophor excitation requires light intensities in the range of MW cm(-2) to GW cm(-2), which can be derived by diffraction limited focusing of continuous wave and pulsed NIR laser radiation. NIR lasers can be employed as the excitation source for multifluorophor multiphoton excitation and hence multicolour imaging. In combination with fluorescence in situ hybridization (FISH), this novel approach can be used for multi-gene detection (multiphoton multicolour FISH). Owing to the high NIR penetration depth, non-invasive optical biopsies can be obtained from patients and ex vivo tissue by morphological and functional fluorescence imaging of endogenous fluorophores such as NAD(P)H, flavin, lipofuscin, porphyrins, collagen and elastin. Recent botanical applications of multiphoton microscopy include depth-resolved imaging of pigments (chlorophyll) and green fluorescent proteins as well as non-invasive fluorophore loading into single living plant cells. Non-destructive fluorescence imaging with multiphoton microscopes is limited to an optical window. Above certain intensities, multiphoton laser microscopy leads to impaired cellular reproduction, formation of giant cells, oxidative stress and apoptosis-like cell death. Major intracellular targets of photodamage in animal cells are mitochondria as well as the Golgi apparatus. The damage is most likely based on a two-photon excitation process rather than a one-photon or three-photon event. Picosecond and femtosecond laser microscopes therefore provide approximately the same safe relative optical window for two-photon vital cell studies. In labelled cells, additional phototoxic effects may occur via photodynamic action. This has been demonstrated for aminolevulinic acid-induced protoporphyrin IX and other porphyrin sensitizers in cells. When the light intensity in NIR microscopes is increased to TW cm(-2) levels, highly localized optical breakdown and plasma formation do occur. These femtosecond NIR laser microscopes can also be used as novel ultraprecise nanosurgical tools with cut sizes between 100 nm and 300 nm. Using the versatile nanoscalpel, intracellular dissection of chromosomes within living cells can be performed without perturbing the outer cell membrane. Moreover, cells remain alive. Non-invasive NIR laser surgery within a living cell or within an organelle is therefore possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Multiphoton Microscopy in Dermatological Studies: a Mini-Review

This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, s...

متن کامل

Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator.

In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical sol...

متن کامل

Recent advances in intravital imaging of dynamic biological systems.

Intravital multiphoton microscopy has opened a new era in the field of biological imaging. Focal excitation of fluorophores by simultaneous attack of multiple (normally "two") photons generates images with high spatial resolution, and use of near-infrared lasers for multiphoton excitation allows penetration of thicker specimens, enabling biologists to visualize living cellular dynamics deep ins...

متن کامل

Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation.

Multicolor nonlinear microscopy of living tissue using two- and three-photon-excited intrinsic fluorescence combined with second harmonic generation by supermolecular structures produces images with the resolution and detail of standard histology without the use of exogenous stains. Imaging of intrinsic indicators within tissue, such as nicotinamide adenine dinucleotide, retinol, indoleamines, ...

متن کامل

Dynamic multiphoton imaging: a live view from cells to systems.

Leaps in scientific technology often occur at the interface of seemingly disparate disciplines. This holds true with the recent application of multiphoton microscopy to the biological sciences, leading to a new generation of imaging-based studies extending from the tracking of individual molecules within living cells to the observation of whole organisms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of microscopy

دوره 200 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2000